Suppression of keratoepithelin and myocilin by small interfering RNA (an American Ophthalmological Society thesis).

نویسنده

  • Andrew J W Huang
چکیده

PURPOSE Mutations of keratoepithelin (KE) and myocilin (MYOC) have been linked to certain types of inherited corneal stromal dystrophy and open-angle glaucoma, respectively. In this study, the feasibility of using small interfering RNAs (siRNAs) to suppress the expression of keratoepithelin and myocilin and their capabilities to reduce the related cytotoxic effects caused by mutant myocilins were investigated. METHODS cDNAs of human KE gene and myocilin gene were amplified by polymerase chain reaction and subcloned into pEGFP-N1 to construct respective plasmids, KEpEGFP and MYOCpEGFP, to produce fluorescence-generating fusion proteins. Short hairpin RNAs (shRNAs) were generated from an RNA polymerase III promoter-driven vector (pH1-RNA). Transformed HEK293 and trabecular meshwork (TM) cells were cotransfected via liposomes with either KEpEGFP or MYOCpEGFP and respective shRNA-generating plasmids to evaluate the suppression efficacy of shRNAs. Suppression of KE-EGFP by KE-specific shRNAs was evaluated by fluorescence microscopy and Western blotting. Suppression of MYOC-EGFP by myocilin-specific shRNAs was quantified with UN-SCAN-IT software on digitized protein bands of Western blots. A BiP promoter-driven luciferase reporter assay was used to evaluate the stress response of TM cells induced by misfolded mutant myocilins. RESULTS Two KE-specific shRNAs that effectively suppressed the expression of KE-EGFP in HEK293 cells were identified. One shRNA (targeting the coding sequence starting at 1528bp of KE) reduced the expression of KE-EGFP approximately by 50%, whereas the other shRNA (targeting the 3'-UTR region of KE) suppressed greater than 80% of the expression. Cotransfection of MYOCpEGFP and various shRNA-generating plasmids targeting different regions of myocilin (containing amino acid residues R76, E352, K423, or N480 associated with inherited glaucoma) showed effective reduction of MYOC-EGFP, ranging from 78% to 90% on average. The activation of BiP gene (as a stress response induced by mutant myocilins) in transformed TM cells was significantly reduced when mutant myocilin proteins were suppressed by myocilin-specific shRNAs. CONCLUSIONS KE- or myocilin-specific shRNAs could effectively suppress the expression of recombinant KE or myocilin proteins and the related cytotoxicity of mutant myocilins. RNA interference may have future therapeutic implications in suppressing these genes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Suppression of keratoepithelin and myocilin by small interfering RNAs (siRNA) in vitro.

PURPOSE Mutations of keratoepithelin (KE) and myocilin (MYOC) have been linked to certain types of inherited corneal stromal dystrophy and open-angle glaucoma, respectively. We investigated the potential use of small interfering RNAs (siRNAs) to suppress the expression of KE and MYOC and the related cytotoxicity of mutant myocilins in vitro. METHODS cDNAs of the human keratoepithelin (KE) gen...

متن کامل

Optimal Electroporation Condition for Small Interfering RNA Transfection into MDA-MB-468 Cell Line

Background: Electroporation is a valuable tool for small interfering RNA (siRNA) delivery into cells because it efficiently transforms a wide variety of cell types. Since electroporation condition for each cell type must be determined experimentally, this study presents an optimal electroporation strategy to reproducibly and efficiently transfect MDA-MB 468 human breast cancer cell with siRNA. ...

متن کامل

Small interfering RNA; principles, applications and challenges--

Gene silencing using RNAi (RNA interference), has recently been used as a successful laboratory technique in determining the function and control of gene expression and provides a wide range of applications in molecular biology and gene therapy. RNAi is a method of suppressing gene expression. In this direction, a single-stranded RNA molecule of about 21–23 nucleotides, called siRNA (small inte...

متن کامل

Design, simplified cloning, and in-silico analysis of multisite small interfering RNA-targeting cassettes

Multiple gene silencing is being required to target and tangle metabolic pathways in eukaryotes and researchers have to develop a subtle method for construction of RNA interference (RNAi) cassettes. Although, several vectors have been developed due to different screening and cloning strategies but still some potential limitations remain to be dissolved. Here, we worked out a simple cloning stra...

متن کامل

مهار بیان ژن GFP به وسیله تداخل RNA (RNAi) در دودمان سلولی کارسینومای جنینی P19

 Introduction: RNA interference (RNAi) is a phenomenon of gene silencing that uses double-stranded RNA (dsRNA), specifically inhibits gene expression by degrading mRNA efficiently. The mediators of degradation are 21- to 23-nt small interfering RNAs (siRNA). The use of siRNAs as inhibitors of gene expression has been shown to be an effective way of studying gene function in mammalian cells.  Ai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Transactions of the American Ophthalmological Society

دوره 105  شماره 

صفحات  -

تاریخ انتشار 2007